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A DIFFERENTIAL DELAY EQUATION ARISING 
FROM THE SIEVE OF ERATOSTHENES 

A. Y. CHEER AND D. A. GOLDSTON 

ABSTRACT. The differential delay equation defined by w(u) = 1/u for I < u < 
2 and (uw(u))' = o(u - 1) for u > 2 was introduced by Buchstab in con- 
nection with an asymptotic formula for the number of uncanceled terms in the 
sieve of Eratosthenes. Maier has recently used this result to show there is unex- 
pected irregularity in the distribution of primes in short intervals. The function 
co(u) is studied in this paper using numerical and analytical techniques. The 
results are applied to give some numerical constants in Maier's theorem. 

1. INTRODUCTION 

In the traditional sieve of Eratosthenes all the integers 1 < n < x which are 
multiples of the numbers 2 < m < xl 2 are removed. What remains after this 
process is the number 1 and all the prime numbers p in the range x1/2 < p ? x. 
By the prime number theorem there are asymptotically x/ log x such numbers 
as x -- oo. Suppose that only the numbers 2 < m < x1/u, for u > 2, are 
sieved. In this case, not only prime numbers, but also numbers with all their 
prime factors larger than xl /u are unsieved. It is natural in this case to ask for 
an asymptotic formula for the number of elements left unsieved. Buchstab [1] 
obtained such a formula. To state his result, define q(x, y) to be the number 
of positive integers < x with no prime factors < y, and further define the 
function cw(u) for u > 1 by the differential delay equation 

(la) o(u)=-, 1? u<2, 
U 

(lb) dT(uw(u)) = w((u- 1), u > 2, 

where in (lb) the right-hand derivative of w(u) is taken at u = 2. Buchstab 
proved, for x - oo, that 

(2) 0(x, y) - xey co (u) rl (1 - ), 
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where y = x 1/u, and u > 1 is fixed. By Mertens's formula we have 

p<y ~ ~ e- 

which implies that (2) may be reformulated as 

(3) +(x, y) - uco(u) 
x 

UWUlog x 

This result of Buchstab is interesting because it shows that +(x, y) is a 
somewhat irregular function. The factor x Hlp<y (1 - 1 ) is the "expected value" 
of q(x, y), and for y < logx one finds by the Legendre sieve [4, p. 200] 
that +(x, y) is asymptotic to this expected value. However, for larger sieving 
ranges, equation (2) shows that 0(x, y) oscillates from this expected value by 
the factor e7w(u). In view of this, it is important to study the function w(u). 

It has been shown by Buchstab [1], de Bruijn [2], and Hua [5] that w(u) - e Y 
as u --+ oo, and further that w(u) converges faster than exponentially to e Y . 
The best result is due to Hua, who proved that 

( 4 ) | () Iw( u) - e - Y g < e - U(logu+loglogu+(loglogu/logu)-1)+O(u/logu) 

A surprising application of Buchstab's result has recently been made by Maier 
[6]. Using an ingenious construction, Maier proved that the number of primes 
in short intervals [x, x + (logx) c], C > 1, is sometimes larger than, and 
sometimes smaller than the expected number (logx)C 1 . To state his result, 
let 

(5) M+(v) = max(w(u) - e r), M_ (v) = min(cow(u) - e ). 
u>v u>v 

We will see later that these functions are well defined. Let nr(x) denote the 
number of primes < x. Maier proved, for any fixed C > 1, 

lim sup (X + (logx)C) - 7r(x) >1 +eyM(C) 
(6) 

X-*00 (logx)C1 

lim inf 7(X + (o X) C) - 7r(X) +eyM (C). X-*o (logx)C-1 ?1+~j 

Furthermore, using a method involving the adjoint equation of (1), due to 
de Bruijn, Maier showed that w(u) - e Y changes sign in every interval of 
length one. Hence, for all C > 1, 

(7) eyM+(C) > 0, e7M_ (C) < 0. 

In this paper we compute w(u) - e Y numerically for small values of u and 
thus provide some numerical constants for Maier's results. We also prove some 
new results on w(u) . We start by proving a theorem on M+ (v) and M_ (v) 
for the function wc(u) . 
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Theorem 1. For v > 2, we have 

(8) M+(v) = max (w(u) - e ), M_(v) = min (w(u) -e Y). 
v<u<v+2 v<u<v+2 

Theorem 1 indicates that the maxima and minima of co(u) - e Y get smaller 
in intervals of length greater than 2. If we examine w(u) - e more closely, we 
find it has a regular oscillatory pattern. Let us denote the zeros of w(u) - e r 
in increasing size by A1 I A, 2A3, .3 . Except for the relative minimum at u = 2 
which is a cusp, the relative maxima and minima of o(u) - e Y occur at the 
critical points where w'(u) = 0. We let cl = 2 and denote the critical points 
in increasing size by C2, c3 .. As mentioned before, for every u > 2, the 
interval ( u, u + 1) contains a zero Ai ?and it is easy to prove that it will also 
contain a critical point cj (see ?2). We add to this information the following 
result: 

Theorem 2. Each interval [u, u + 1] contains at most two zeros for u > 2, and 
at most two critical points. Furthermore, we have 21 < cl < A2 < * ; the c2k 
are relative maxima with w(c2k) - e-r > 0, and the c2k-l are relative minima 

with w(c2k_ 1) -e_ < 0 

It is easily proved that the interval [2k A Ak + 1] always contains two critical 
points, while [ck - 1, ck] always contains two zeros. 

We prove these theorems in ?2. In ?3 we provide numerical results on co(u) 
for 1 < u < 11 . These results are obtained by solving (1) iteratively using 
power series solutions. A similar procedure has been discussed in [3]. 

We expect that as n - oo, An+l - An 1, Cn+l -c -n 1, and cn - An ` - 

However the convergence is not very rapid. These results are summarized in 
Table 2. [Added in proof: These results have now been proved by A. Hilde- 
brand.] 

2. PROOF OF THE THEOREMS 

Suppose u > 2, and let 

(9) W(u) = w(u) - e Y. 

By (lb) we see that W(u) satisfies 

(10) uW'(u) = W(u - 1) - W(u) 

or 

(11) ~~~d 
d-(uW(u)) = W(u - 1). 

We now claim that there is a value c in every interval (u, u + 1) such that 
W'(c) = 0. Note first that (10) implies 

(u 
(12) uW/(U)= | W(t) dt- 
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Suppose that W (t) :$ 0 in (u - 1, u) . Then W'(t) is either always positive or 
always negative in this interval, since W'(t) is continuous for t > 2. Suppose 
W'(t) is positive in (u - 1, u). Then by (12), W'(u) < 0, a contradiction 
to the continuity of W'(t). The same argument applies if W'(t) is negative. 
If W(t) 0 O in this interval, then this will imply W(t)- 0 for all t < u 
contradicting the value of W(u) in the initial range 1 < u < 2. Thus, there is 
a sign change in (u - 1, u). 

The same result also holds for W(u) (i.e., every interval (u, u + 1) contains 
a zero of W(u)) because (see [5]), for u > 2 

(13) uh(u- 1)W(u) = - W(t)h(t)dt, 
0 u~~~~~-1 

where 

(14) h(u)= exp(-ux-x- jlte dt)dx, 

and h(u) > 0 is a decreasing function, with h(u) 1 I/u as u xo . Using (13) 
and the positivity of h(u), we find by the same argument just used that every 
interval (u, u + 1) has a zero Ak . With this preparation we can now prove the 
theorems. 

Proof of Theorem 1. To prove the result for M+ (v), it suffices to prove that 
given a positive relative maximum at c, c > 3, there will be a value d', c- 2 < 
d' < c, such that W(d') > W(c). By (13) and the mean value theorem for 
integrals there is a value d such that c - 1 < d < c and 

W(d)h(d) = -ch(c - 1) W(c). 

Applying (13) to W(d) again, we find a number d, d - 1 < d' < d, such that 

W(d')h(d') =-dh(d - 1)W(d), 

and hence 

(15) W(d cdh(c - 1)h(d - 1) W(c) > cdW(c), 
h(d)h(d') 

since h(u) is positive and decreasing. This proves the result for v > c - 2. 
The first maximum is at c2 = 2.7632... and is positive, and the second is at 
C4 = 4.2175... and is also positive (see Table 1 and Figure lb). Therefore, 
our proof shows that the result holds for v > c4 - 2. But we have M+(v) = 

max?<u<c (w(u) - e Y) for 1 < v < c2, and since C4 -2 < C2, the result holds 
for all v > 1 . The proof for M (v) is similar. o 

Proof of Theorem 2. First note that (10) implies immediately that at critical 
points Ck > 2 we have 

(16) W(Ck- l) = W(Ck). 
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FIGURE la. W(u) for I < u < 3. 
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FIGURE lb. W(u) for 2.5 < u < 4.5. 

Our method for proving Theorem 2 is by induction. We note that the theorem is 
true initially for u < 3, as may be easily verified since cc)(u) = (log(u - 1) + 1)/u 
for 2 < u < 3 (see also Figure la). Now suppose the theorem is true up to Ck, 

a positive maximum of W(u), and consider the interval [Ck- 1, Ck] for k > 2. 
Let us suppose further that W(u) is as indicated in Figure 2, i.e., W(u) de- 
creases in (ck- 1, Ck_ 1 ), has a negative minimum at Ck I1, and then increases in 

(ck1 ' Ck), and hence has precisely two zeros A k-' ik in the interval. Further 
suppose that the only critical points in [ck - 1, Ck] are the relative minimum 
at Ck-l and the relative maximum at Ck (if k = 2 the relative minimum cl 
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FIGURE 3 

is a cusp, not a critical point). We will prove that W(u) will duplicate this 
behavior in the next interval [ck,5 Ck+21, i.e., .W(u) will decrease, hit a zero 
at Ak+1 continue to decrease to a negative minimum at Ck+l , then increase 
through a zero Ak+2 to a positive maximum at ck+2 (see Figure 3). The only 
critical points will be at ck+lI and ck+2.' Further ck+lI 

- Ck - > 1,5 Ck+2 - Ck > 
1 k+1 Ak-1 > 1, and Ak+2-Ak >I. This will prove Theorem 2 for U < Ck+2.- 

The above argument can now be applied to the next interval [ck+2 - 1, 5Ck+2].- 
Hence, the theorem will hold by induction for all u. 
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We first note that if c is a critical point which is not a relative maximum 
or relative minimum, then WI (c) = W"(c) = 0. On differentiating (10), we 
conclude that W'(c - 1) = 0. Thus, critical points that are inflection points can 
only occur at u = c if u = c - 1 is also a critical point. Since by assumption 
the only critical points in [ck - 1, Ck] are at Ck-l and Ck, the only possible 
critical points which are not extrema in [Ck, Ck + 1] are at Ck-I + 1 or Ck + 1 
These cases will be treated later. 

By equation (11) the sign of W(u) in the interval [Ck - 1, Ck] determines 
whether uW(u) increases or decreases in the interval [Ck, Ck + 1]. Further, 
uW(u) and W(u) have the same zeros and the same sign. Thus uW(u) is 
as pictured in Figure 3; i.e., uW(u) has a zero at u = Zk, UW(u) > 0 for 
Ak < u < Ck, uW(u) increases for Ck < u < Ak-I + 1, and uW(u) decreases 
for k- 1+1 < u < k +1 . Since W(u) has a zero in every open interval of length 
1, W(u) must have a zero Ak+l in (k ' Ak + 1), and hence W(u) and uW(u) 
have a unique zero at Ak+1 'Note Ak+1 > Ak-1 + 1, so that Ak+1 k-1 >1. 

Also W(Ak + 1) < 0. 
Next, uW(u) will increase for k + 1 <u <k+l + 1 . Further, it must hit a 

unique zero at Ak+2' since otherwise the interval (Ak+1 9).k+ 1+ 1) would have 
no zero. Also Ak+2 > ik + 1, So Ak+2 -k > 1 iand W(k+l + 1) > 0. 

It remains to prove that W(u) is as shown in Figure 3, and Ck+l - Ck-l > 1 

and Ck+2 - Ck > 1 . We begin by noting that if uW(u) decreases and W(u) > 
0 in an interval, then W(u) also decreases in that interval; and if uW(u) 
increases and W(u) < 0 in an interval, then W(u) increases in that interval. 
Therefore, W(u) decreases in (1k- I+ 1 ,5 k+) and increases in (Ak + 1, Ak+2)* 

Let Ck+l be the next relative minimum of W(u) for u > Ak+1 
We now show W(u) decreases for Ck < u < 2k-I + 1. To see this, let a 

and ,B be any two numbers in this interval with Ck < a < K < Ak- l + 1 - On 
integrating (1 1), we have 

9,-i 

(17) fl W(fl) - aW(a) = f W(t) dt < (,8 - a)W(a - 1) 

since by Figure 2, W(t) is positive and decreasing in the interval (a- 1, ,8- 1) C 

(Ck - 1, k-1). Hence we have 

/3(W(,8) - W(a)) = ,BW(fl) - aW(a) - (, a - a)W(a) 

< (f - a)(W(a - 1) - W(a)) = (11 - a)aW'(a), 

which gives 

(18) a W'(a) > A __(W(,) - W(a)). 

From (18) we see W(u) decreases in (Ck, 2k-i + 1), since W(u) initially 
decreases and if there were a value a where W'(a) = 0, then (18) would imply 
W(,8) < W(a) for all fl > a. Hence a would not be a relative minimum, and 
there are no critical points which are inflections in this interval. Furthermore, 
W(u) > 0 in (ck, Ik-I + 1), because uW(u) > 0 in this interval. 
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Since Ck+l is defined as the next relative minimum of W(u) for u > Ak+1' 
we have that W(u) decreases in (Ak+i, Ck+l). 

We next consider the interval (Ck+l, 9k + 1) We note Ck+l $ Ak+1' since 
equality would imply Ak+1 - 1 = Ak or Ak- 1* The first case is impossible 
because this would imply the interval (Ak Ak+ 1) of length one has no zeros. 
The second case is impossible since Ak+1 > Ak-1 + 1. 

We now prove Ck-l + 1 < Ck+l . For if not, then either Ck+l < Ck-l + 1, or 
Ck+l = Ckl + 1. In the first case let Ck+l < f < Ck-l + 1. Then, since W(t) is 
negative and decreasing in (ck+l - 1, Ckl), 

rA-I 
JJW(8) - Ck+l W(Ck+l) = W(t)dt < (f - Ck+l)W(Ck+l - 1) 

= (/1 - Ck+l ) W(Ck+l ) 

where we used (16) in the last line. Hence, W(fl) < W(ck+l) for any fi > ck+l, 

contradicting the fact that Ck+l is a relative minimum. In the case Ck+l = 

Ckl I+ 1, we have W(Ck+l) = W(ckl), and for Ak+1 < f < Ck+l = C k-I + 

fCk+1 I 

-/BW(,B) +ck+lW(ck+l) = W(t)dt > (ck+l - /3)W(ck+l - 1) 

= (ck+I - /3) W(Ck+l ) , 

implying W(,f) < W(ck+l), which is impossible if ck+l is a relative minimum. 
This argument also shows that Ckl 1 + 1 is not an inflection point as mentioned 
earlier. 

Next, we prove that W(u) increases in (ck+l, Ak + 1). Let a and ,B be 
any numbers satisfying Ck+l < < 3 < Ak + 1 . By the same argument used to 
prove (18), we have 

a W'(a) < A (W(fl) - W(a)). 

If W(u) did not increase through this interval, then there is a point u = a in 
the interval where W'(a) = 0. Letting a = a implies W(fl) - W(a) > 0 for 
any ,B > a, which shows that W(u) increases. Let Ck+2 be the next relative 
maximum of W(u) for u > Ak+2. Then W(u) increases in (Ak+2' ck+2). The 
proof that Ck+2 > Ck + 1 is the same as the previous argument that Ck+l > 

Ck-l + 1 , which also shows that Ck + 1 is not an inflection. This completes the 
proof of Theorem 2. o 

3. NUMERICAL CALCULATIONS 

To compute w(u) numerically, we start with a power series solution in the 
initial range and then iteratively obtain new power series solutions by substitut- 
ing into (lb) and integrating term by term. Let 

(19) w1j(u) = wc(u) for j < u < j+1. 
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Thus, toI(u) = 1/u for 1 < u < 2, and by integrating (1), 

(20) (U) log(u- 1) + 
for 2 < u< 3. 

U 

In general, for j > 1, 
ru-1 

(21) uw1+1 (u) wj(t) dt + (j + l)w1j(] + 1) for j + l < u < j + 2. 

We expand cj(u) into a power series about u = j + 1: 

00 

(22) wj(u) = Eak(j)(U-(Q + 1)) for j < u < j + 
k=O 

For j = 2 we have 

wo2(u) = log(u - 1) + 1 

- (_ ( 3D ) (1 + log(2 + (u - 3))) 

- (o (-1)mn(u-3)m\ (0+og+ ()n+1 (U -3)n~ 

= ( 3m+1 n=1 n2+ 
00 

= Eak(2)(u-3)k 
k=O 

where ao(2) = (1 + log 2)/3, and for k > 1 

/+ + log I k-I (2\m 
(23) ak(2) = (-1)+ ( e+ 3 + (k1 lm 

m )) 

k+ 1 = (-l) bk(2), say. 

We have b, (2) = -0.02146... , and it is easily shown that bk(2) > 0 for k > 2. 
Since 

kE 1 (2 ) < kE (2) 3 (2) k 

we have 
bk(2) < 1/2k for k > 2. 

An induction argument using (21) shows that in general, for k > 1 and j > 2, 

k 
(24) lak(j)I < 1/2 

This shows that the series solutions converge rapidly. 
In computing wj (u), we begin by truncating the series for W2(u) and com- 

puting the coefficients of the resulting polynomial to a given accuracy. Let this 
approximation to w2(u) be denoted by T2(u), and put E2(u) = w(2(u) - T2(u) 
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and E = max2<u<3 1w2(u) - T2(u)l. On substituting T2(u) into (21) we obtain, 
for 3 < u < 4, a new series T3(u) given by 

u-i 

uT3(u) = 1 T2(v) dv + 3T2(3) 
rU-1 

= 12 (fW2(V) - E2(v)) dv + 3(W2(3) - E2(3)) 

= u3(u) - uE3(u), 

where 

1 (f U 1 \ (u -3)E +3E 
jE3(u)j= - E2(v) dv + 3E2(3)) < < E. 

The same argument clearly applies for each iteration, and thus, if we start with 
a given accuracy, we will retain it at each step, aside from round-off and other 
computational errors. 

-10, 1. lol0.. 

5. 10. 

8 8. 82 8.4 8 8.89 

-5. 10 

FIGURE 4. W(u) = co(u) - e for 7.8 < u < 9. 

Our calculations were initially done using MACSYMA on a Vax 780. The 
series for co2(u) was truncated at 50 terms and the coefficients were accurate 
to 16 digits. This polynomial was then used with (21) to determine the ap- 
proximations to woj(u). Later we used Mathematica on a Mac II to redo our 
calculations. We first used a series for wo2(u) with 60 terms and did all calcula- 
tions with 25-digit accuracy, and then.repeated the calculations with 100 terms 
and 50-digit accuracy. 

The error in truncating w2(u) after the kth term is less than the absolute 
value of the next term since the series is alternating with decreasing coefficients. 
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Hence, the error is at worst 1/2k+1 . For the case k = 50, the error is less 
than 2 51 = 4.4 x 10- 16, while for k = 60 and k = 100 the errors are 

61 19 101 31 - 
= 4.3 x I0 and 2-1 = 3.9 x 1 o- , respectively. The zeros and 

critical points of co(u) were computed using Newton's method. Comparing 
the results from the different approximations provided a check on the accuracy 
of our calculations. The results in Tables 1 and 2 are in complete agreement 
between the calculations with k = 60 and k = 100, with the exception of the 
last digit in the value of w(cQ2) - e& , where one would expect the accuracy of 

the calculation for k =60 to be at most 10-19. 

TABLE 1 

Point u wo(u) - e 7 

A1 1.78107 0 

cl 2 -6.14594 x 10-2 
A2 2.48332 0 
c2 2.76322 5.68380 x I0-3 
A3 3.22700 0 

c3 3.46974 -6.36654 x 10-4 
A4 4.00171 0 
C4 4.21753 6.22072 x 10- 
A5 4.78578 0 

c5 4.99493 -5.01722 x 10-6 
A6 5.56650 0 
C6 5.77973 3.38871 x 10-7 
A7 6.35072 0 

c7 6.56115 -2.03006 x 10-8 
A8 7.14000 0 
c8 7.34605 1.09487 x 10-9 
A9 7.93400 0 
c9 8.13590 -5.33852 x 10-" 

A%o 8.73170 0 

c10 8.93036 2.36503 x 10-12 
A,, 9.53230 0 
c,, 9.72844 -9.58198 x 10- 14 

A12 10.33550 0 

c12 10.52934 3.57568 x 10- 1 

The results of our calculations are indicated in Tables 1 and 2. Table 1 
lists the zeros and critical points of o(u) - e Y, and the values of co(u) - e Y 
at these critical points. These values are truncated at 5 digits. The size of 
Maier's constants e7M+(C) and e7M (C) may be estimated from this table, 

since M+(C) > c(cj) - e7Y for any cj > C, and M_(C) < co(cj) - e ' for 

any cj > C. In fact M+(C) = co(cj) - e-7 for even j and AJ_l < C < Cj, 
and M_(C) = wo(cj) - e<7 for odd j and Aj_, < C < cj. Thus, for exam- 

ple, there are arbitrarily large values of x where the interval [x, x + log x] 
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TABLE 2 

n~ -) C C C ) C -A n+1 n n+1 n n+1 n n-n 

.70225 .76322 .98215 .21892 
1 .70225 .76322 .98215 .21892 
2 .74367 .70652 .98642 .27989 
3 .77470 .74779 .99053 .24274 
4 .78407 .77739 .99322 .21582 
5 .78072 .78480 .99395 .20914 
6 .78421 .78142 .99465 .21323 
7 .78927 .78489 .99532 .21043 
8 .79399 .78985 .99590 .20604 
9 .79770 .79446 .99636 .20190 

10 .80060 .79807 .99673 .19866 
11 .80319 .80090 .99703 .19613 

will contain more than (1 +e7(2.36 x 10 12))log7 X> (1 + 4.2 x 10 12) log7 x 
primes, and other values of x where the interval will have less than 
(1 - e7(5.338 x 10 -I))log7x < (1 - 9.5 x 10-11)log7x primes (see Figure 
4). 

Table 2 summarizes some statistics on gaps between zeros and critical points. 
Our results indicate that An+1 - An and Cn+l - cn increase. We expect that the 
distance will slowly converge to 1 in both cases. The fact that Cn+I - Aln < 
1 follows from the observation that by (10) W(cn+l) = W(cn+l - 1), and 
therefore, since there is a sign change in the interval [cn+I - 1, cn+1, there 
must be two sign changes. 

Added Comment. The editor has brought to our attention the paper, Numerical 
solution of some classical differential-difference equations, by George Marsaglia, 
Arif Zaman, and John C.W. Marsaglia, which has since appeared in Math. 
Comp. 53 (1989), 191-201. In their paper a numerical scheme similar to the 
one in this paper is used to compute w(u) accurately for u < 500. They also 
studied other differential-difference equations. 
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